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The automorphism group of C[T ]/(Tm)[X1, . . . , Xn]

Stefan Maubach

Abstract

The automorphism group of C[T ]/(T m)[X1, . . . , Xn] is studied, and a suffi-
cient set of generators is given. Motivations for this theorem are given.

1 Introduction

This paper is about the automorphism group over C[T ]/(Tm)[X1, . . . , Xn]. Why
this interest in this automorphism group? This is mainly motivated by several
equivalent formulations of the famous Jacobian Conjecture in terms of the rings
Rm := C[T ]/(Tm). (See [4]). Look for these equivalent formulations in the beginning
of section 3. From this point of view, knowing more about the automorphisms in
Rm[X1, . . . , Xn] could be interesting. The main theorem in section 3 is finding a suf-
ficent set of generators for this automorphism group. Section 2 defines used notations
and discusses some prerequisites.

2 Notations and small generalisations

First let us define a whole list of notations for this paper.

Definition 2.1.

• k is a field of characteristic zero.

• Rm := C[T ]/(Tm). We will denote T̄ by ε.

• A := R[X1, . . . , Xn] (except in this section, where it can be a commutative
R-algebra). Bm := Rm[X1, . . . , Xn].

• AutR(A) is the R-automorphism group of A. Aff R(A) ⊂ AutR(A) is the
affine automorphism group consisting of maps (a1X1 + b1, . . . , anXn + bn),
where ai ∈ R∗, bi ∈ R. ER(R[X1, . . . , Xn]) ⊂ AutR(A) is the collection of
automorphisms of the form (X1, . . . , Xi−1, Xi + f,Xi+1, . . . , Xn) where f ∈
R[X1, . . . , Xi−1, Xi+1, . . . , Xn].

• X = (X1, . . . , Xn), the identity map.

• Xα := Xα1
1 · · · · ·Xαn

n for any vector α ∈ Nn.
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• If F ∈ An then F = (F1, . . . , Fn) where Fi ∈ A; hence Fi is defined as the i-th
coordinate of F .

• Pi,j is the map interchanging Xi and Xj .

Let R be some commutative ring. A polynomial mapping is an element F ∈
R[X1, . . . , Xn]n. A polynomial automorphism is a polynomial map which has a poly-
nomial inverse G, i.e. G ◦ F = F ◦G = X. The collection of these polynomial auto-
morphisms is denoted by Aut(R[X1, . . . , Xn]). Any element F ∈ Aut(R[X1, . . . , Xn])
gives an automorphism R[X1, . . . , Xn] −→ R[X1, . . . , Xn] by P −→ P (F ).

3 The automorphism group of Rm[X]

To motivate the results in this section we first give some equivalent formulations of the
Jacobian Conjecture in terms of these rings. Let JC(n) be the Jacobian Conjecture
in dimension n over C. Motivated by results of Bass in [1], Furter in [5], and Derksen
in [2], the following result was proved by van de Essen in [4]. His proof is based on
results of [3] and a result of Nowicki in [8]. For more details we refer to [4]

Theorem 3.1. There is equivalence between:

1. JC(n) is true.

2. For any d ∈ N there exists a bound C(d) such that for any m ∈ N and any F ∈
AutRmRm[X] satisfying deg(F ) = d, det(JF ) = 1 we have deg(F−1) ≤ C(d).

3. For any d, e ∈ N there exists a bound C(d, e) such that for any m ∈ N and any
F ∈ AutRm

Rm[X] satisfying deg(F ) = d, det(JF ) = 1 + N and Ne = 0 we
have deg(F−1) ≤ C(d, e).

4. For any d ∈ N there exists a bound C(d) such that for any Rm-derivation
D ∈ ηDerRmRm[X] satisfying div(D) = 0 and deg(exp(D)) ≤ d we have
deg(exp(−D)) ≤ C(d).

First, let us consider the case n = 2. In the field case we have T (k, n) which is
called the tame automorphism group of k[X, Y ]. It is generated by elementary maps
Ek(k[X1, X2]) and affine maps Aff (k). One has the following theorem, due to Jung
and van der Kulk ([6],[7],[3]):

Theorem 3.2. Autkk[X, Y ] = T (k, 2). More precisely, Autkk[X, Y ] is the amalga-
mated free product of Aff (k) and E(k) over their intersection.

If R is a ring satisfying R̄ is a field one could hope to extend this result. However,
if we define T (R, 2) in the same way we cannot hope to have AutRR[X, Y ] = T (R, 2)
since (X + εX2, Y ) is an automorphism in Rm but not in T (R, 2). However, if we
allow maps of the form (X + εH, Y ) and (X, Y + εH) (let us denote the set of these
maps by N(R)) to be tame we easily have:
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Theorem 3.3. AutRm
Rm[X, Y ] = T (Rm, 2), where T (Rm, 2) is the group generated

by Aff (k),E(k) and N(R).

Proof. “⊇” is easy. “⊆”: let F ∈ AutRmRm[X, Y ]. By theorem 3.2 we may assume
that F = (F1, F2) = (X, Y )+ εi(H1,H2) for some i ∈ N. Now let ϕi = (X− εiH1, Y ),
σi = (X, Y − εiH2) then ϕiσiF = (X, Y ) + εi+1(G1, G2) for some Gi. Doing this
several times, we get ϕm−1σm−1 · · ·ϕiσiF = (X, Y ), hence F ∈ T (Rm, 2).

In the field case the result is even more useful since it is proved that T (k, 2)
is the amalgamated free product of E(k, 2) and Aff (k, 2), hence there is a unique
decomposition of each map. If R is a ring for which R̄ is a field one cannot hope to
extend this result. One would like the extension to be a real extension of the field
case. Unfortunately, the following example shows that this is quite impossible.

Example 3.4. Let R = R2. Then
(X, Y ) = (X−εG(X−f(Y ), Y ), Y )(X+f(Y ), Y )(X+εG(X+f(Y ), Y ))(X−f(Y ), Y )
for any G ∈ k[T1, T2], f ∈ k[Y ].

However, one might try to find a “more unique” set of generators for the auto-
morphism group, by not allowing all maps (X1, . . . , Xi + εHi, . . . , Xn). The following
theorem does this:

Theorem 3.5. Let n ≥ 1. AutRmBm is generated by the union of the following sets:

1. AutC(A);

2. the maps (X1 + cεX1, X2, . . . , Xn) all c ∈ C;

3. the maps (X1+εXd
1 , X2, . . . , Xn), (X1+εXd+1

1 , X2, . . . , Xn), . . . where d is some
positive integer.

Here we view AutC(A) as a subset of AutR(Bm); notice that C ⊂ Rm. One can prove
that the maps 2) of the above theorem together with Aff C(A) generate Aff Rm

(Bm);
the lemma’s 3.9 and 3.10 indicate this. These remarks give

Corollary 3.6. AutRm
Rm[X, Y ] is generated by Aff Rm

Rm[X, Y ], ERm
Rm[X, Y ] and

the maps (X + εXd, Y ), (X + εXd+1, Y ), . . . where d is some positive integer.

In this section we will prove the following theorem (which is stronger than theorem
3.5):

Theorem 3.7. AutRmBm is generated by the union of the following sets:

1. AutC(A);

2. the maps (X1 + cεX1, X2, . . . , Xn) all c ∈ C;
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3. some maps (X1 + εF1(X1), X2, . . . , Xn), (X1 + εF2(X1), X2, . . . , Xn), . . . where
lim

i→∞
deg(Fi mod ε) = ∞ .

Definition 3.8. Denote by Cm the monoid generated by 1),2) and 3) from the above
theorem.

We want to prove that Cm = AutRm
Bm. The proof of theorem 3.7 will go by the

use of several lemma’s.

Lemma 3.9. Let α ∈ R∗m. Then (αX1, X2, . . . , Xn) ∈ Cm.

Proof. Let α = c(1 + a1ε + a2ε
2 + . . . + am−1ε

m−1) for some nonzero c ∈ C. Let
β1, . . . , βm−1 be the zeros of the polynomial Y m−1 + a1Y

m−2 + a2Y
m−3 + . . . +

am−2Y + am−1. Then (αX1) = (cX1) ◦ (X1 − β1εX1) ◦ . . . ◦ (X1 − βm−1εX1) since
for any λ1, λ2 ∈ Rm one has (λ1X) ◦ (λ2X) = (λ1λ2X). This calculation works in n
variables too so we’re done.

Lemma 3.10. (αX1 + β, X2, . . . , Xn) ∈ Cm for all α ∈ R∗m, β ∈ Rm.

Proof. Let α−1β = γ + δ where γ, δ ∈ R∗m. Then (γX1)(X1 + 1)(γ−1X1)(δX1)(X1 +
1)(δ−1X1) = (X1 + γ + δ) = (X1 + α−1β). So (αX1)(X1 + α−1β) = (αX1 + β). This
calculaton works in n variables too, so we’re done.

Lemma 3.11. Let F1, . . . , Fn ∈ Rm[X1, . . . , Xn] be such that C[F̄1, . . . , F̄n] =
C[X1, . . . , Xn] then Rm[F1, . . . , Fn] = Rm[X1, . . . , Xn].

Proof. Well-known (see [3]).

Lemma 3.12.

1. Let H,G ∈ (Bm)n then (X + εkH) ◦ (X + εkG) = X + εk(H + G) mod εk+1.

2. Let H,G ∈ Bm then (X1 + εkH,X2, . . . , Xn) ◦ (X1 + εkG, X2, . . . , Xn) = (X1 +
εk(H + G) + εk+1(. . .), X2, . . . , Xn)

Proof. Easy since εkH(X + ε(. . .)) = εkH(X) + εk+1(. . .).

Lemma 3.13. If X + εH ∈ Cm for all H ∈ (Bm)n then Cm = AutRmA.

Proof. Let F ∈ AutRmBm. Then F̄ ∈ AutCA. Since F̄−1F = X + εH for some
H ∈ Rm[X1, . . . , Xn]n we have F = F̄ ◦ (X + εH). Hence F ∈ Cm.

Lemma 3.14. If (X1 + εH,X2, . . . , Xn) ∈ Cm for all H ∈ Bm then Cm = AutRm
Bm.

Proof. First notice that P1,i(X+εH,X2, . . . , Xn)P1,i = (X1, . . . , Xi−1, Xi+εH(P1,i),
Xi+1, . . . , Xn) so (X1, . . . , Xi−1, Xi + εH,Xi+1, . . . , Xn) ∈ Cm for all H ∈ Bm. We
are going to proceed by induction.
Suppose (X1 + εH1, . . . , Xi + εHi, Xi+1, . . . , Xn) ∈ Cm all Hi ∈ Rm[X1, . . . , Xn]. Now
choose some Hi+1 ∈ Rm[X1, . . . , Xn]. Let H̃ := (X1+εH1, . . . , Xi+εHi, Xi+1, . . . , Xn).
Then Rm[H̃] = Bm by lemma 3.11, so there exists Gi+1 ∈ Bm such that Hi+1 =
Gi+1(H̃). Hence (X1, . . . , Xi, Xi+1+εGi+1, Xi+2, . . . , Xn)◦H̃ = (X1+εH1, . . . , Xi+1+
εHi+1, Xi+2, . . . , Xn). By induction and lemma 3.13 we are done.
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Lemma 3.15. Suppose for all k ≥ 1 and any arbitrary monomial M (= cXα for
some c ∈ C) we have that there exists some map Ek,M ∈ Cm such that Ek,M =
(X1 + εkM + εk+1H,X2, . . . , Xn) for some H ∈ Bm then Cm = AutRmBm.

Proof. by lemma 3.14 we only have to prove that (X1 + εH,X2, . . . , Xn) ∈ Cm for all
H ∈ Rm[X1, . . . , Xn]. We will proceed by induction on k.
Suppose that for any map F := (X1 + εH,X2, . . . , Xn) we can construct some map
F ′ = (X1 + εH ′, X2, . . . , Xn) ∈ Cm such that F − F ′ = (εkH ′′, 0, . . . , 0) some H ′′ ∈
Rm[X1, . . . , Xn]. Let H ′′ =

∑s
j=1 Mj + εG where G ∈ Bm and Mj are monomials.

Now we are going to compose several maps which are the identity in all variables
except the first one; therefore we write down only the first variable. Using lemma
3.12.2 a few times we get

F ′′1 := F ′1 ◦ (Ek,M1)1 ◦ . . . ◦ (Ek,Ms
)1 mod εk+1

= (F1 − (εk
∑s

j=1 Mj)) ◦ (X1 + εk
∑s

j=1 Mj) mod εk+1

= F1 mod εk+1.

Hence we can construct F ′′ which is equal to F + (εk+1H̃, 0, . . . , 0) some H̃ ∈ Bm. .
By induction we are done since εm = 0.

Lemma 3.16. If G ∈ Cm of the form G mod εk+1 = (X1 + εkXd
1 , X2, . . . , Xn) for

any d ≥ 2 then Cm = AutRm
Bm.

Proof. By lemma 3.15 we only have to prove that we can construct maps Ek,M of the
form (X1 + εkM + εk+1H,X2, . . . , Xn) for some H ∈ Rm[X1, . . . , Xn]. Now notice
that if c′ ∈ C such that c′

d−1 = c then

(c′−1
X1, X2, . . . , Xn)(X1 + εkXd

1 , X2, . . . , Xn)(c′X1, X2, . . . , Xn) =
(X1 + cεkXd

1 , X2, . . . , Xn).

Furthermore defining L := (X1 + a2X2 + . . . + anXn, X2, . . . , Xn) we have

(∗) L−1(X1 + cεkXd
1 , X2, . . . , Xn)L

(X1 + cεk(X1 + a2X2 + . . . + anXn)d, X2, . . . , Xn).

So maps of the form (X1 + cεk(X1 +a2X2 + . . .+anXn)d, X2, . . . , Xn) mod εk+1 can
be constructed (where only the first coordinate is not the identity). By lemma 3.12.2
we can make maps of the form (X1 + cεkH + εk+1(. . .), X2, . . . , Xn) where H is any
linear combination of polynomials of the form (X1 +a2X2 + . . .+anXn)d. Since these
polynomials generate the k-vectorspace of homogeneous polynomials in n variables of
degree d we can find a map Ek,M as stated for any monomial of degree d. Since d is
arbitrary ≥ 2 we are done.

Now we will give some technical statements for the case that n = 1 ( Bm = Rm[X],
one variable). These will be used in the proof of lemma 3.18 which will be the last
step in the proof of theorem 3.7. This is the only lemma in which one has to do a lot
of (dirty) calculation; one cannot evade some hard work in some places. (At least, I
cannot.)
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Lemma 3.17.

1. If there exists some map Ek,d ∈ Cm where d ≥ 2 such that Ek,d mod εk+1 =
(X + εkXd) then there exists a map F ∈ Cm such that

F mod εk+2 = (X + εk+1
s∑

i=0

hiX
i)

and hd = 1.

2. If there exists a map F ∈ Cm with

F mod εk+1 = (X + εk
s∑

i=1

hiX
i)

where s > d, hd = 1 (d ≥ 2) then there exists some F̃ ∈ Cm satisfying

F̃ mod εk+1 = (X + εk
s∑

i=1

h̃iX
i)

where h̃d = 1, h̃s = 0 (and if hi = 0 then h̃i = 0).

Proof.

1. Choose some c ∈ C. Let a ∈ C be such that ad−1 = c. Then

(a−1X)Ek,d(aX) = (X + cεkXd) mod εk+1.

So we have Ek,d,c ∈ Cm such that Ek,d,c mod εk+1 = (X + cεkXd) for any
c ∈ C. Now choose α ∈ Rm such that α = 1+ cε for some c ∈ C. Notice that αd

mod ε2 = 1 + cdε and α−d mod ε2 = 1− cdε (in fact, “analytically speaking” d
could be any real number). So now we have some F ∈ Cm such that

F mod εk+2

= Ek,d,−1(α−1X)Ek,d,1(αX)
= (X − εkXd − εk+1G)(α−1X)(X + εkXd + εk+1H)(αX)

where G, H are certain polynomials ∈ C[X] and c ∈ C arbitrarily chosen. But
writing out the last equation we get:

F mod εk+2

= (X − εkXd − εk+1G(X))(α−1X)(X + εkXd + εk+1H(X))(αX)

= (α−1X − εkα−dXd − εk+1G(α−1X))(αX + εkαdXd + εk+1H(αX))

= (α−1X − εk(1− cdε)Xd − εk+1G(X))(αX + εk(1 + cdε)Xd + εk+1H(X))

= (α−1X − εkXd + εk+1(cdXd −G(X)))(αX + εkXd + εk+1(cdXd + H(X)))
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= (X + α−1εkXd + α−1εk+1(cdXd + H(X)))− εk(αX + εkXd)d+
εk+1(cd(αX)d −G(αX)))

= (X + (1− cε)εkXd + εk+1(cdXd + H(X)))− εk((1 + cε)X + εkXd)d+
ek+1(cdXd −G(X)))

= (X + εkXd + εk+1((cd− c)Xd + H(X))− εk(X + cεX + εkXd)d+
εk+1(cdXd −G(X)).

Now we have to differentiate between k = 1 and k > 1 since in the latter case
εk(X + cεX + εkXd)d = εkXd + dcεk+1Xd mod εk+2 and in the case k = 1 one
has εk(X + cεX + εkXd)d = ε(X + cε(X + Xd))d = ε(Xd + εdXd−1(X + Xd))
mod ε2 = εXd + ε2(dXd + dX2d−1). Let us do the case k > 1:

F mod εk+2

= (X + εkXd + εk+1((cd− c)Xd + H(X))− εk(X + cεX + εkXd)d+
εk+1(cdXd −G(X))

= (X + εkXd + εk+1((cd− c)Xd + H(X))− (εkXd + dcεk+1Xd)+
εk+1(cdXd −G(X))

= (X + εk+1((−c)Xd + H(X)) + εk+1(cdXd −G(X))

= (X + εk+1((−c + cd)Xd + H(X)−G(X)).

Since c is completely free (and G, H are fixed) we can obtain the desired result.
The case k = 1 is not really different: replace “H(X) − G(X)” by “H(X) −
G(X)− dX2d−1” and observe that the coefficient of Xd equals ε2(2cd− c− d).

2. Choose some c ∈ C such that cs−1 = −1 and cd−1 6= −1. Now let F ′ :=
(c−1X)F (cX)F . Then

F ′ mod εk+1

= (c−1X)(X + εk
∑s

i=1 hiX
i)(cX)(X + εk

∑s
i=1 hiX

i)

= (X + εk
∑s

i=1 giX
i)(X + εk

∑s
i=1 hiX

i)

= (X + εk
∑s

i=1 giX
i + εk

∑s
i=1 hiX

i)

where gi := ci−1hi. Define h′i := gi + hi for all i. Then h′s = gs + hs =
cs−1hs + hs = −hs + hs = 0. Also if hi = 0 then gi = 0 and hence h′i = 0.
Furthermore h′d = gd + hd = cd−1hd + hd = (cd−1 + 1) 6= 0. Choose a ∈ C such
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that ad−1 = (cd−1 + 1)−1. Now define F̃ := (a−1X)F ′(aX). Then

F̃ mod εk+1

= (a−1X)(X + εk
∑s−1

i=1 h′iX
i)(aX)

= (X + εk
∑s−1

i=1 ai−1h′iX
i)

= X + εk
∑s−1

i=1 h̃iX
i

where h̃i := ai−1h′i. Hence h̃d = 1, and if h′i = 0 then h̃i = 0.

Lemma 3.18. For the case n = 1 ( Bm = Rm[X], one variable) we have for any
k, d ∈ N that there exists some Ek,d ∈ Cm such that Ek,d = (X + εkXd) mod εk+1.

Proof. Notice that for d = 0, 1 we can refer to lemma 3.10. So let d > 1. This lemma
will be done by induction.
Suppose for any k′ < k we have maps Ek′,d as in the theorem.
Suppose for any d′ < d we have maps Ek,d′ as in the theorem.
We have to prove that we can construct a map Ek,d. By induction we have some map
Ek−1,d. So by lemma 3.17.1 we get some map F of the form

F mod εk+1 = X + εk
s∑

i=0

hiX
i

where hd = 1. Now by applying lemma 3.17.2 several times we have constructed a
map F ′ which looks like

F mod εk+1 = X + εk
d∑

i=0

hiX
i.

By induction we have maps Ek,d−1, . . . , Ek,1, Ek,0. Now define for any c ∈ C the
maps Ek,d,c := (X + cεkXd) mod εk+1 = (a−1X)Ek,d(aX) where a ∈ C such that
ad−1 = c. Now using lemma 3.12 a few times we have

F ◦ Ek,d−1,−hd−1 ◦ Ek,d−2,−hd−2 ◦ . . . ◦ Ek,2,−h2 ◦ (X − h1ε
kX) ◦ (X − h0ε

k)
mod εk+1 = (X + εkXd)

and hence we are done by induction.

Proof. (of theorem 2) Lemma 3.18 gives us the ability to construct maps as required
in lemma 3.16. (The fact that lemma 3.18 is in one dimension is of no consequence,
that was just to make notations easier.) Since the requirements of lemma 3.16 are
fulfilled, we are done.
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